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The heat transfer in Falkner-Skan similarity boundary layers is considered. Shortcomings of 
some approximate formulas for the local Nusselt number are pointed out and discussed. The 
importance of an accurate representation of the f low field in the outer region of the thermal 
boundary layer is emphasized. 
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Introduction 

The exact solution of the thermal energy equation for flow in a 
boundary layer of the Falkner-Skan type was derived by Fage 
and Falkner 1 some 50 years ago. However, this solution is given 
in integral form, and simple algebraic approximations may 
therefore still be of some relevance in engineering applications 
and for design purposes. Furthermore, in dealing with more 
complex heat transfer problems, one may benefit from the 
insight gained through the simpler approximate analyses. 

The objective of the present paper is to consider some 
asymptotic formulas for the local Nusselt number when the 
Prandtl number is small, i.e., appreciably less than unity. 
Although the Prandtl number of most liquids is greater than 
unity, liquid metals which are frequently encountered in nuclear 
reactor technology 2'3 have low Prandtl numbers, typically 
about 0.01. Moreover, the extreme Prandtl number results (i.e., 
high and low Prandtl number asymptotes) are interesting in 
themselves and provide useful approximations to the exact 
solution, even in the range Pr ~ 1. 

An interesting approach to the low Prandtl number regime is 
the two-region formulation considered recently by Chen 4, in 
which the thermal boundary layer is divided into two distinct 
regions. The region next to the wall extends over the velocity 
boundary layer, and the outer region extends over the inviscid 
flow domain. In the heat transfer literature, however, there 
seems to be some confusion about the various approximations 
involved in the asymptotic approaches. The intention of the 
paper is therefore to elucidate this issue. 

First, one of the approximate formulas for the temperature 
gradient at the wall is improperly given in the textbook by 
Evans 5. This appears not to have been realized before, and the 
corrected expression will be provided in this paper. 

Second, the approximations used by Chen 4 are considered. It 
is pointed out that the temperature derived in the outer region is 
inconsistent with the approximations employed for the velocity 
field. However, it is easily verified that the resulting formula for 
the local Nusselt number incidentally recovers a very accurate 
and useful result derived by Evans s. 

The thermal energy equation 
and its exact solution 

The calculation of the heat transfer rate in a two-dimensional, 
steady, laminar boundary layer requires the solution of the 
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thermal energy equation 

~T 8T t~2T 
dy E 

The fluid properties have been considered uniform throughout 
the flow, and internal dissipation of energy is assumed 
negligible. In accordance with classical boundary layer 
arguments, longitudinal heat conduction has been neglected in 
Equation 1: The accuracy of this approximation for high Peclet 
number flow of liquid metals has been verified by Grosh and 
Cess 2. 

Exact, or approximate, knowledge about the velocity field is 
required in order to derive the temperature field T(x, y) from 
Equation 1. Provided the inviscid flow belongs to the Falkner- 
Skan family, in which the velocity distribution obeys the 
relation 

U(x) ~ x" (2) 

the velocity components in the viscous boundary layer can be 
obtained from the dimensionless stream function f(~/) according 
to 

u = dy '  v = - d-x (3) 

4 O = Uvx (4) g T i  

/ m + l  U 
~=Yx/ ~- ,x (5) 

Here, Equations 4 and 5 represent the well-known transfor- 
mation due to Hartree 6, which reduces the boundary layer 
momentum equation to an ordinary differential equation. 
Correspondingly, the thermal energy equation (1) transforms 
into the ordinary equation 

O" +trfO'=O (6) 

where 0 = 1 - ( T -  T~) / (T , -  To) is a dimensionless temperature 
and tr=v/K is the Prandtl number. The prime signifies 
differentiation with respect to r/. 

The complete solution to the energy equation (6) subject to 
the boundary conditions 0(0)= 0 and 0---* 1 as r/---, oo is found 
elsewhere (e.g., EvansS). Of particular significance is the heat 
transfer rate, for which the Nusselt number is a convenient 
measure. For the heat transfer in boundary layers driven by a 
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free stream of the particular form in Equation 2, the local 
Nusselt number becomes 

, / m + l  
Nu x = 0w 4 ~ - - -  Re x (7) 

o l = f : e x p [ - a f : f ( ~ l ) d r l ] d t  (8) 

where Re x = Ux/v is the local Reynolds number and 0~ =if(0) is 
the wall gradient of the dimensionless temperature field. It is 
important to emphasize that the result in Equations 7 and 8 is 
exact only if the variation of the stream function f is exactly 
represented by a solution of the momentum equation. 

Approximate solutions for small 
Prandtl number 

The low Prandtl number regime is characterized by a thermal 
boundary layer which extends far into the inviscid mainstream, 
so most of the thermal resistance is contributed by the region 
outside the velocity boundary layer. In Chapter 7.3 of Evans 5 
the flow is fairly well approximated by f = r / - r / * ,  which 
represents an inviscid flow field displaced a distance r/* away 
from the wall. Here, ~/* denotes the nondimensional 
displacement thickness defined as 

f:" 6* /m + 1 r /*-  (1 - f ' )  dr/=~- / - ~ -  Re x (9) 

where 5" is the conventional displacement thickness of the 
velocity boundary layer. 

With f = r / - r / * ,  the integral in Equation 8 can be evaluated, 
and the reciprocal of the wall gradient becomes 

1 / n "x 1/2 f F / t r \  1/2 q) /a  \ 
~-~=~-a)  ~ l + e r t ] _ ~ ) r / * ] ~ e x p ~ r / . 2 )  (10) 

In the corresponding solution by Evans 5, the exponential factor 
has unfortunately been left out; the correct solution, Equation 
10, was given earlier by Merk 7. If the displacing effect of the 
velocity boundary layer is completely neglected--i.e., if t/* = 0 -  
Equation 10 reduces to 

1/O'w = (n/2a) l/2 (11 ) 

in accordance with the solution given by Evans ~ for a stream 
function approximated as f =  r/. 

For later use, it is instructive to expand Equation 10 in powers 
of the parameter (a/2)~/2~1". The leading terms in the resulting 
series become 

1/0 w = (/r/2tr) 1/2 + r/* + ( ' K O ' / 8 ) l / 2 ~  . 2  --[- • • • (12) 

which is a reasonable approximation of Equation 10 in the limit 
O" ----~ 0 .  

Chen 4 suggested that improved accuracy could be obtained 
by modeling the heat transfer in the viscous boundary layer and 
in the inviscid flow separately. Accordingly, the temperature 
field was divided in two distinct regions, and the displacement 
thickness 6" defines the boundary between them. 

Chen neglected the convective terms in Equation 1 in the 
inner region 0~  y < 6*, and assumed a velocity field given by 
~k=yU as a reasonable approximation for 6*<~y<oo. By 
integrating the energy equation separately for the two regions, 
he obtained a linear variation of the temperature in the inner 
region, which could be matched with the outer region solution. 
By this method, Chen was able to derive an approximate 
formula for the local Nusselt number which compared favorably 
with the exact solution for Prandtl numbers less than 0.1. In fact, 
he demonstrated that predictions by the approximate formula 
were within 3.2 ~o of the exact results for all values of the free- 
stream parameter m. 

Unfortunately, Chen's solution for the temperature variation 
in the outer region is not consistent with the resulting energy 
equation in that region, and the Nusselt number formula 
obtained is accordingly inconsistent with the approximations 
made. The corrected solution, however, gives the reciprocal wall 
gradient as 

1 / n  \1/2( Y / 6 \ ' / 2  7)exp/trr/*2\~2) 
~7-=tl*+ - -  1 - e r  - t/* (13) 

which, expanded in powers of (a/2)tnrl *, becomes 

1/O'w = (n/2a) 1/2 + ( 7 ~ d r / 8 ) l / 2 t ]  . 2  + - ' -  (14) 

for small values of a. 
The assertion by Chen that "a new approach based on a two- 

region model is proposed" is questionable since Evans 
introduced a two-region approximation in his excellent 
textbook s. More specifically, he assumed a stream function f 
which vanished for t/~<t/* and was given by f = r / - t / *  in the 
outer region t/>~r/*. This is equivalent to assuming a step 
function for the velocity profile f '  consisting of a step of unit 
height located at t/=t/*. Substituting this approximation for f 
into the integral-form solution in Equations 7 and 8 and 

Notation 

f Dimensionless stream function 
K Thermal diffusivity 
m Exponent in inviscid velocity distribution 
Nux Local Nusselt number 
Re x Local Reynolds number, Ux/v 
T Temperature 
u, v Velocity components in the x, y coordinate 

directions 
U Free-stream velocity 
x Streamwise coordinate 
y Cross-stream coordinate 

Greek symbols 
6" Velocity boundary layer displacement thickness 

r/ Dimensionless coordinate 
0 Dimensionless temperature, I - ( T -  T~)/(Tw- T®) 
v Kinematic viscosity 
tr Prandtl number, v/K 
~k Stream function 

Subscripts 
w Condition at the wall 
oo Condition outside the boundary layers 

Superscript 
* Denotes a conventional displacement thickness 

Function 

e r fx=  2_ ~Xe - = 2 d z = - e r f ( - x )  
Jo 
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integrating, we get 

1/O~, = (lt/2cr) 1/2 +~/* (15) 

Even though this result was derived from the exact solution, 
Equation 8, Equation 15 is evidently an approximate formula, 
since the exact variation of f was roughly accounted for by the 
two-region approximation. 

D i s c u s s i o n  

It is interesting to compare the assumptions involved in the two- 
region approaches of Chcn 4 and Evans 5 in Table 1. The inner 
region approximation f = O  is obviously equivalent to the 
neglect of the convective terms in Equation 1. In the outer 
region, however, the stream function f =  ~l-tl*, as assumed by 
Evans, is clearly different from the velocity field considered by 
Chen; the latter corresponds to f=~l. Nevertheless, it is 
remarkable that the incorrectly calculated expression for the 
Nusselt number due to Chcn is equivalent to Equation 15 
obtained by Evans, and, furthermore, that this cquivalcncc went 
unnoticed through the reviewing procedure. It can readily bc 
verified, however, that the temperature variation as calculated 
by Chcn for the outer region corresponds to the velocity field 
represented by the stream function f = l  1-~1. rather than f=~l. 

The various formulas for the reciprocal wall gradient are 
derived from four distinct approximations of the velocity field. 
Figure 1 displays the corresponding variation of the stream 
function as compared with an exact solution for f .  Here, it 
should be kept in mind that Equations 12 and 14 arc nothing 
else but power expansions of Equations 10 and 13, respectively. 

Now, examination of the various formulas 10-15 reveals that 
for small Prandtl numbers 

(i) Equations 10 and 12 approach Equation 15. 
(ii) Equations 13 and 14 approach Equation 11. 

It can therefore be concluded that the assumption made for the 
velocity field in the outer region is important, and the influence 
of the inner region approximation is less significant for the 
smaller values of ~r. With reference to Figure 1, it may thus be 
anticipated that Equations 10 and 15 arc superior to Equations 

Table 1 Two-region approximations for the velocity field 

Outer region 
Inner (r/* ~< ~t <oo) 

region 
Variable (0~<t/<~/*) Chen 4 Evans s eq. 7.5 

@ 0 yU ( y - & * ) U  
f 0 ~I ~t- 7" 
u 0 U U 
v 0 - y(dU/dx)  - ( y - & * )  dU /dx+  U(dS*/dx) 

11 and 13, simply because they represent a better approximation 
to the exact stream function in the outer region of the thermal 
boundary layer. This is furthermore confirmed by the 
comparison of the various formulas in Table 2, which also shows 
that the two-region approach by Evans 5, i.e., Equation 15, is 
superior to the other formulas. 
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Figure I Various approximations for f (broken lines) as compared 
with the exact solution (solid line) 

Table 2 Percentage error in Nu x as calculated by the approximate formulas 10-15. Flat-plate boundary layer (m=0) with r/*=1.21678 

/ m +  1 -~- 1/2 

a Exact (Evans s) Eq. 10 Eq. 11 

Error, 100% [Nux -  (Nux)exac~/(NUx)exact 

Eq. 12 Eq. 13 Eq. 14 Eq. 15 

10-4 0.00790224 - 0.0089 0.97 - 0.0087 0.96 0.96 - 0.0014 
1 O- 3 0.0244880 - 0.11 3.0 - 0.11 3.0 3.0 - 0.034 
1 O- 2 0.0729570 - 1.0 9.4 - 0.98 8.6 8.6 - 0.31 
1 O- 1 0.198031 - 9.0 27. - 7.7 20. 19. - 2.5 

1 0.469600 - 54. 70. - 37. 18. - 2.4 - 14. 
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